VaxCyne

Immunotherapeutic Vaccine Technology
Targets Cancer Biomarkers

Contact: Richard Purcell, Director
richard.purcell@dnahealthlink.com

Disclaimer

In this presentation and in other documents incorporated herein, as well as in oral statements made by Cynvec, statements that are prefaced with the words “may,” “will,” “expect,” “anticipate,” “continue,” “estimate,” “project,” “intend,” “designed” and similar expressions, are intended to identify forward-looking statements regarding events, conditions, and financial trends that may affect Cynvec’s future plans of operations, business strategy, results of operations and financial positions. These statements are based on Cynvec’s current expectations and estimates as to prospective events and circumstances about which Cynvec can give no firm assurance. Further, any forward-looking statement speaks only as of the date on which such statement is made, and Cynvec undertakes no obligation to update any forward-looking statement to reflect future events or circumstances. Forward-looking statements should not be relied upon as a prediction of actual future financial condition or results. These forward-looking statements, like any forward-looking statements, involve risks and uncertainties that could cause actual results to differ materially from those projected or unanticipated.

THE FOLLOWING PRESENTATION DOES NOT REPRESENT AN OFFER OF SECURITIES. ANY OFFERING OF SECURITIES WILL BE MADE ONLY TO PROSPECTIVE INVESTORS TO WHOM CYNVEC SPECIFICALLY DIRECTS OFFERING MATERIALS, INCLUDING A CONFIDENTIAL PRIVATE PLACEMENT MEMORANDUM AND ONLY BY MEANS OF SUCH CONFIDENTIAL PRIVATE PLACEMENT MEMORANDUM.
Cynvec was founded through a cancer research funding agreement with New York University and Dr. Daniel Meruelo in 2004

- Fund the basic research on Sindbis virus vector technology in the treatment of cancer
- Worldwide, exclusive license to NYU technology
- Strong and deep IP portfolio

Development Milestones

- Derived proprietary, patent protected sindbis vector platform - CYN 101
- Established GMP production process and analytics
- Completed pharmacology, biodistribution, and short-term toxicology
- Pre-IND meeting with U.S. FDA in June 2009
- Discovered and patented the immunotherapeutic vaccine mechanism of action of sindbis vectors using cancer biomarkers
- Renamed the immunotherapeutic vaccine platform – VaxCyne

Developing VaxCyne to Target Cancer Biomarkers NY-EOS-1 and CEA

- Ovarian, Lung, Colorectal, Breast, Gastric Cancers

VaxCyne is Engineered to Produce Tumor Biomarkers (TAAs) When Injected for Immunotherapeutic Vaccination

Differences Between Normal and Cancer Cells are Biomarkers:

- Tumor Associated Antigens
- Targets for Immunotherapy

*National Cancer Institute
Prioritization of Cancer Antigens: Biomarkers of Medical Importance for Cancer Therapy*

Clin Cancer Res 2009;15(17) September 1, 2009
VaxCyne is a Platform for Product Development

VaxCyne Vectors are Derived from CYN101 Sindbis Viral Vector*

VaxCyne Vector Cloning Site = Rapid Engineering

NY-ESO-1 and CEA are High Priority Cancer Biomarkers: NCI*

Overexpressed in Numerous Cancers:
- Ovarian - Breast - Thyroid
- Lung - Gastric - Pancreatic
- Melanoma - Colorectal

Differentiation Between Normal and Cancer Cells:
- Oncofetal Protein Not Expressed in Normal Adult Tissues

Poor Auto-Antibody Response:
- Activation of NK and T-Cells Needed for Effective Immune response

Combination with Chemotherapy – Immune Checkpoint Inhibitors:
- PD-1 Inhibitors**

**Matsuzaki et al. www.pnas.org/cgi/doi/10.1073/pnas.1003345107
How VaxCyne Works: Immune System Activation Against Tumor Biomarkers

LacZ Biomarker Tumor Model

- SV/LacZ
- LacZ
- gp70
- Anti-LacZ CD8+ T cell
- Anti-gp70 CD8+ T cell
- Antigen-presenting cell
- Natural killer cell
- LacZ(+) tumor cell
- LacZ(-) tumor cell (escape variant)
- Apoptotic tumor cell
- Lymph node

Surviving Mice are Resistant to Tumors and Have Immunity Against Tumor Biomarkers

Sindbis/LacZ-cured Mice Reject WT Tumor Cells and Have Memory CD8+ T Cells Against an Endogenous CT26 Tumor Associated Antigen (gp70)

Granot T, Yamanashi Y, Meruelo D. Molecular Therapy 2013
VaxCyne Technology Proof-of-Concept:
LacZ-specific CD8+ T cells Target and Destroy LacZ+ Tumor Cells

VaxCyne Immunotherapy with Tumor Biomarker Leads to 100% Survival

Granot T, Yamanashi Y, Meruelo D. Molecular Therapy 2013

FDA Reviewed Pre-Clinical & CMC

Rapid Path to IND for VaxCyne in Ovarian Cancer

CYN101 Biodistribution
- Tumors Not Normal Cells
- Lymph Nodes & Spleen

CYN101 Toxicology
- No Detectable Toxicity
- Acute
- 4-Week

CYN101 Pharmacology
- Tumor Reduction & Survival
- Induces NK and T-Cell Response
- Activates Epitope Spreading
- Synergistic with Chemotherapy

High-Yield GMP Vector Manufacturing & Purification
- Scalable In-Vitro Transfection Process
- Scalable Mammalian Cell Factory System
- Scalable Single-Column Purification

GLP Assays for Lot Release
- Titer/Quantification
- Potency/Biomarker Production
- Stability to 1 Year
Phase I Study of VaxCyne in Ovarian Cancer:
Evaluation of Safety and Immune Response

TITLE: Phase I dose-escalation study of VaxCyne
as intraperitoneal (IP) or intravenous (IV)
immunotherapeutic consolidation in women with ovarian cancer

Principal Investigator: Franco Muggia
Co-Principal Investigator: Mark Einstein

VaxCyne Activates the Immune System
Against Cancer Biomarkers

Viral Vector Platform Enables Rapid Product Development
Viral Antigens Enhance Immune Response Against Inserted Biomarkers

• Easily Engineered to Produce Tumor Associated Antigens:
 - Proteins
 - Peptides
 - RNA

• Activates Multi-cellular Immune Response
 - NK
 - CD-8 & CD-4 Lymphocytic T-Cells
 - Memory T-Cells

• VaxCyne Treats Tumors And Prevents Recurrence
 - VaxCyne with Tumor Biomarker Activates Immune System
 - Immune Cells Attack Tumor Cells Containing Viral and Biomarker Tumor Antigens
 (Vector Infects Cancer Cells That Over-Express Laminin Receptor)

• Excellent Preclinical Results
 - Tumor Eradication - No Detectable Toxicity
 - Survival - Biodistribution Profile Demonstrates Mechanism
 - Immunity Against Cancer Recurrence
Cynvec is Raising Capital for the Clinical Development of VaxCyne for Cancer Immunotherapy

<table>
<thead>
<tr>
<th>Cumulative Investment</th>
<th>Valuation Triggers</th>
<th>Months from Financing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.5 MM</td>
<td>VaxCyne Preclinical</td>
<td>12</td>
</tr>
<tr>
<td>$5 MM</td>
<td>VaxCyne Phase I Safety</td>
<td>24</td>
</tr>
<tr>
<td>$10 MM</td>
<td>VaxCyne Phase I/II Preliminary Efficacy</td>
<td>42</td>
</tr>
</tbody>
</table>

A Single Ovarian Cancer Indication for VaxCyne Establishes Baseline Valuation for Cynvec

<table>
<thead>
<tr>
<th>Event</th>
<th>eNPV (M; risk adj.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At start of Phase I</td>
<td>$34M</td>
</tr>
<tr>
<td>At start of Phase II</td>
<td>$84M</td>
</tr>
<tr>
<td>At start of Phase III</td>
<td>$299M</td>
</tr>
<tr>
<td>At Registration</td>
<td>$606M</td>
</tr>
<tr>
<td>At Commercial Intro</td>
<td>$735M</td>
</tr>
</tbody>
</table>

eNPV Model Developed by The Frankel Group - 2009
VaxCyne Valuation Potential in Cancers Expressing NY-EOS-1 and CEA

- At start of Phase I: $263M
- At start of Phase II: $704M
- At start of Phase III: $2,602M
- At Registration: $4,957M
- At Commercial Introduction: $6,000M

eNPV Model Developed by The Frankel Group - 2009